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MONGE–AMPÈRE EQUATIONS

M. MARVAN, A.M. VINOGRADOV, AND V.A. YUMAGUZHIN

Abstract. In this paper, we construct scalar differential invariants of
Monge–Ampère equations in general position.

1. Introduction

With this paper we start a systematic study of differential invariants of
Monge-Ampère equations aiming at the classification problem, methods of
integrations and other applications. We are interested in equations in two
independent variables (the classical case). Monge-Ampère equations merit
a special attention due to a large spectrum of various applications, first of
all, in differential geometry and mathematical physics. Moreover, they form
a natural testing area for new methods emerging in the modern theory of
nonlinear PDE’s.

In spite of more than 200 years of history of Monge-Ampère equations
and numerous publications devoted to them it would be an exaggeration
to say that their nature is well understood. An important success was es-
tablishing of the existence and uniqueness theorems for them (see [6, 3] for
local aspects and [10] for global ones). Modern formulation of the classical
Monge’s method of solution was given by Matsuda [7, 8] and Morimoto [9].
The hopes are that differential invariants could illuminate these and many
other aspects of the theory of Monge-Ampère equations.

According to [12] (see also [1]) scalar differential invariants provide key
to solving the classification problem for any kind of geometrical structures.
In fact, geometrical structures of a given type are classified by solutions
of a naturally associated classifying (differential) equation, which describes
interrelations among the corresponding scalar differential invariants. More
exactly, scalar differential invariant are smooth functions on the classifying
diffiety, which is the infinite prolongation of the classifying equation. This
diffiety has, generally, singularities and its singular strata classify those geo-
metrical structures that possess nontrivial symmetries. Each of these strata
is also an infinitely prolonged differential equation in a lesser number of inde-
pendent variables. For instance, homogeneous structures correspond to the
zero-dimensional case. So, the classification problem consists of a complete
description of all strata composing the classifying diffiety and, therefore,
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presuppose a complete symmetry analysis of the geometric structures under
consideration. The interested reader will find an illustration of the above
said in [13] where plane 3-webs, a rather simple geometrical structure, is
considered.

In this paper we interpret Monge-Ampère equations as certain geometrical
structures on 5-dimensional contact manifolds and look for their differential
invariants, not only scalar, with respect the group of contact transforma-
tions. Here we limit ourself to the case of generic hyperbolic equations. This
is because of two reasons. First, the study of singular strata presupposes
that of the generic one. Second, for the hyperbolic equations differential
invariants are easier visible due to existence of bicharacteristics.

Differential invariants found in this paper give a solution of the classifica-
tion problem for generic hyperbolic equations. Unfortunately, this solution
is of a theoretical nature and requires a substantial computer support in
analysis of concrete cases. So, a further simplification work is necessary to
improve its efficiency.

Differential invariants for elliptic and parabolic Monge-Ampère equations
can be obtained more or less straightforwardly by following the approach
developed in this paper. This and a study of singular strata will be the
subject of subsequent publications.

2. Preliminaries

Below, all manifolds and maps are supposed to be smooth. By [f ]kp , k =
0, 1, 2, . . . ,∞, we denote the k-jet of a map f at a point p, by R we denote
the field of real numbers, and by Rn we denote the n-dimensional arithmetic
space.

2.1. Jet bundles. Here we recall necessary definitions and facts about jet
bundles, see [4].

Let M be an n-dimensional manifold, let E be an n + m-dimensional
manifold, and let

π : E −→M .

be a bundle. By

πk : Jkπ →M , πk : [S]kp 7→ p , k = 0, 1, 2, . . .

denote the bundle of all k-jets of sections of π. For any l > m ≥ 0, the
natural projection is defined as

πl,m : J lπ → Jmπ , πl,m : [S]lp 7→ [S]mp .

Any section S of π generates the section jkS of the bundle πk by the formula

jkS : p 7→ [S]kp .

By definition, put
LkS = Im jkS .

Let θk+1 be an arbitrary point of Jk+1π, θk = πk+1,k(θk+1), and Tθk
(Jkπ)

the tangent space to Jkπ at the point θk. Then θk+1 defines the subspace
Kθk+1

⊂ Tθk
(Jkπ) by the formula

Kθk+1
= Tθk

(LkS) .
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Clearly, the correspondence θk+1 7→ Kθk+1
is a bijection. Therefore we

identify θk+1 with Kθk+1
. It is easy to prove that

Tθk
(Jkπ) = Kθk+1

⊕ Tθk
(π−1
k (p)) . (1)

Consider all submanifolds of the form LkS containing θk. Subspace spanned
by their tangent spaces Tθk

(LkS) is denoted by C(θk) and it is called the
Cartan plane at θk. The distribution

Ck : θk 7→ C(θk)

is called the Cartan distribution on Jkπ. The distribution Ck, k ≥ 1, can be
defined as the kernel of the Cartan form

Uk = pr2 ◦ (πk,k−1)∗ ,

where pr2 : Tθk−1
(Jk−1π) → Tθk−1

(π−1
k−1(p)) is the projection generated by

direct sum decomposition (1).

2.2. The contact structure. Consider the trivial bundle

τ : R2 × R −→ R2 , τ : (x, y, z ) 7→ (x, y ) .

By x, y, z, p = zx, q = zy, r = zxx, s = zxy, t = zyy we denote the standard
coordinates in J2τ .

The Cartan distribution C1 on J1τ is a contact structure on J1τ . The
corresponding contact 1-form U1 has the canonical form

U1 = dz − p dx− q dy .

in the standard coordinates.
A diffeomorphism ϕ : J1τ → J1τ is called a contact transformation if

it preserves the Cartan distribution. Obviously, a diffeomorphism ϕ is a
contact transformation iff there exist a nowhere vanishing function λ such
that

ϕ∗(U1) = λU1 .

Any contact transformation ϕ can be lifted to the diffeomorphism

ϕ(1)
τ : J2τ −→ J2τ

by the formula

ϕ(1)
τ : θ2 ≡ Kθ2 7→ ϕ∗(Kθ2) ≡ θ̃2 = ϕ(1)

τ (θ2) .

If ϕ is defined on an open set V ⊂ J1τ , then ϕ
(1)
τ is defined on an open,

everywhere dense subset of τ−1
2,1 (V ).

A vector field X in J1τ is a contact vector field if its flow ϕt consists of
contact transformations. Clearly, X is a contact vector field iff there exist
a function λ such that

LX(U1) = λU1 ,

where LX is the Lie derivative with respect to X.
There exists a natural bijection of the set of all contact vector fields in

J1τ onto the set of all functions in J1τ . It is defined by the formula

X 7→ f = X U1 .
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The function f = X U1 is called the generating function of a contact vector
field X. The contact vector field X corresponding to f is denoted by Xf .
In the standard coordinates, the field Xf is given by the formula

Xf = −fp
∂

∂x
−fq

∂

∂y
+(f−pfp−qfq)

∂

∂z
+(fx+pfz)

∂

∂p
+(fy+qfz)

∂

∂q
(2)

2.3. Operations over vector-valued forms. Let M be a smooth n-di-
mensional manifold, Λi(M) the C∞(M)-module of differential i-forms on
M , i = 1, 2, . . ., and D(M) the C∞(M)-module of vector fields on M . Let
α ∈ Λk(M), β ∈ Λr(M), and X,Y ∈ D(M). Then the Frölicher–Nijenhuis
bracket [[· , ·]] of the vector-valued forms α⊗X and β ⊗ Y is defined by the
formula

[[α⊗X, β ⊗ Y ]]

= α ∧ β ⊗
[
X,Y

]
+ α ∧X(β)⊗ Y − Y (α) ∧ β ⊗X

+ (−1)kdα ∧ (X β)⊗ Y − (−1)k(Y α) ∧ dβ ⊗X ,

see [2]. The contraction of forms α⊗X and β⊗Y is defined by the formula

(α⊗X) (β ⊗ Y ) = α ∧ (X β)⊗ Y .

2.4. Distributions and their curvatures. The following simple construc-
tion allows one to associate a vector valued 2-form with a projector. Namely,
let P,Q ∈ D(M) be endomorphisms of the C∞(M)-module D(M) such that
QP = 0. Then

ΩQ,P (X,Y ) = Q[P (X), P (Y )], X, Y ∈ D(M), (3)

obviously, is skew-symmetric and C∞(M)-bilinear, i.e., a vector valued form.
More precisely, it takes values in Im Q ⊂ D(M). If P : D(M) → D(M) is a
projector, i.e., P 2 = P , then the associated curvature form of P is defined
to be

RP = ΩI−P,P (4)
with I = idD(M).

Let D be a distribution on M . Then by D(1) we denote the distribution
generated by all vector fields X and [X,Y ], where X,Y ∈ D. Setting D(0) =
D, we define D(r+1), r = 0, 1, . . ., inductively by the formula D(r+1) =
(D(r))(1).

3. Hyperbolic Monge–Ampère equations

3.1. Monge–Ampère equations. The Monge–Ampère equation is a par-
tial differential equation of the form

N(zxxzyy − z2
xy) +Azxx +Bzxy + Czyy +D = 0 , (5)

where x, y are independent variables, z is a dependent variable, zxx =
∂2z/∂x2, zxy = ∂2z/∂x ∂y, zyy = ∂2z/∂y2, and coefficients N , A, B, C, D
are functions of x, y, z, zx = ∂z/∂x and zy = ∂z/∂y.

We identify equation (5) with the submanifold E of the jet bundle J2τ
determined by the equation

N(rt− s2) +Ar +Bs+ Ct+D = 0 . (6)
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Obviously,
τ2,1(E) = J1τ .

Let θ2 ∈ E, τ2,1(θ2) = θ1, and Fθ1 be the fibre of the projection τ2,1 over
the point θ1 ∈ J1τ . Then the subspace

Smblθ2 E = Tθ2E ∩ Tθ2Fθ1 ,
where Tθ2E is the tangent space to E at θ2 is called the symbol of the equation
E at the point θ2 ∈ E. In terms of standard coordinates, Smblθ2 E is described
by the linear equation

N(tr̃ + rt̃− 2ss̃) +Ar̃ +Bs̃+ Ct̃ = 0, (7)

where r̃, s̃, t̃ are the standard coordinates in Tθ2 generated by the standard
coordinates on J2τ .

A point θ2 ∈ E can be elliptic, parabolic, or hyperbolic. To introduce
these notions, let us consider a one-dimensional subspace P ⊂ C(θ1) such
that (τ1)∗P 6= 0. By definition, put

l(P ) = { θ2 ∈ Fθ1
∣∣P ⊂ Kθ2 } .

The submanifold l(P ) is called a 1-ray. In terms of standard coordinates,
let θ1 = (x, y, z, p, q), P = 〈v〉 and

v = ζ1
∂

∂x
+ ζ2

∂

∂y
+ µ

∂

∂z
+ η1

∂

∂p
+ η2

∂

∂q
. (8)

Then (τ1)∗P 6= 0 means that

(ζ1, ζ2) 6= (0, 0) , (9)

v ∈ C(θ1) means that
µ = ζ1p+ ζ2q , (10)

and P ⊂ Kθ2 means that {
η1 = ζ1r + ζ2s ,

η2 = ζ1s+ ζ2t ,
(11)

where r, s, t are the standard coordinates of θ2 in the fibre Fθ1 . From system
(11), we see that l(P ) is an affine straight line in Fθ1 . By `θ2(P ) we denote
the tangent space Tθ2 l(P ) to l(P ) at the point θ2 ∈ l(P ). We call it a 1-ray
subspace. In terms of the standard coordinates r̃, s̃, t̃ in Tθ2Fθ1 , vectors of
`θ2(P ) satisfy {

ζ1r̃ + ζ2s̃ = 0 ,

ζ1s̃+ ζ2t̃ = 0 ,
(12)

Obviously, `θ2(P ) is spanned by the vector

( r̃, s̃, t̃ ) = ( ζ2
2 , −ζ1ζ2, ζ2

1 ) . (13)

Taking into account (9), we observe that all 1-ray subspaces form the cone

Vθ2 = { r̃t̃− s̃2 = 0 }
in the tangent space Tθ2Fθ1 . This cone is called the cone of singular square
forms. Obviously, the intersection Smblθ2 E ∩ Vθ2 is either zero or a single
1-ray subspace or two 1-ray subspaces. Correspondingly, the point θ2 ∈ E is
then called elliptic or parabolic or hyperbolic. It is not hard to prove that a
contact transformation takes an elliptic, parabolic, or hyperbolic point to an
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elliptic, parabolic, or hyperbolic point, respectively. The equation E is called
elliptic, parabolic or hyperbolic if all its points are elliptic, parabolic or hy-
perbolic, respectively. In this work, we consider hyperbolic Monge–Ampère
equations only. It is easy to prove that E is hyperbolic iff its coefficients
satisfy the condition

∆ = B2 − 4AC + 4ND > 0 . (14)

3.2. Skew-orthogonal distributions. Following [11], we show that a hy-
perbolic Monge–Ampère equation is equivalent to a pair of skew-orthogonal
two-dimensional distributions in the Cartan distribution on J1τ .

Let θ1 be an arbitrary point of J1τ . By Qθ1 we denote the union of all
one-dimensional subspaces P of C(θ1) such that τ∗P 6= 0 and the 1-ray l(P )
is tangent to E at least at one point.

Proposition 3.1. Let E be a hyperbolic Monge–Ampère equation. Then Qθ1
is the union of two-dimensional subspaces D1

E(θ1) and D2
E(θ1) of the Cartan

plane C(θ1), so that
(1) C(θ1) = D1

E(θ1)⊕D2
E(θ1),

(2) D1
E(θ1) and D2

E(θ1) are skew-orthogonal with respect to the symplectic
form dU1 = dp ∧ dx+ dq ∧ dy on C.

Proof. We prove this proposition for Monge–Ampère equations such that
N 6= 0. The proof for N = 0 follows from the fact that every Monge–
Ampère equation can be transformed to one with N 6= 0 by an appropriate
contact transformation.

Let v ∈ Qθ1 and P = 〈v〉. The condition for l(P ) to be tangent to E can
be written in the following way. Suppose v is described by equation (8).
Then the vector (ζ2

2 ,−ζ1ζ2, ζ2
1 ) is tangent to l(P ). Now using (7) we deduce

that l(P ) is tangent to E iff

M(rζ2
1 + 2sζ1ζ2 + tζ2

2 ) +Aζ2
2 −Bζ1ζ2 + Cζ2

1 = 0 .

Taking into account that the coordinates ζi and ηi of v are connected by
equations (11), we reduce this equation to the form

M(ζ1η1 + ζ2η2) +Aζ2
2 −Bζ1ζ2 + Cζ2

1 = 0 . (15)

Taking into account that ζ1 and ζ2 are connected by equation (9), we put
ζ1 6= 0 (the case ζ2 6= 0 is analogous). Then from (11) we get

r =
1
ζ2
1

(η1ζ1 − η2ζ2 + ζ2
2 t) , s =

1
ζ1

(η2 − ζ2t) .

Substituting these expressions for r and s in equation (6) and taking into
account equation (15), we obtain the equation

Mη2
2 + (Aζ2 −Bζ1)η2 −Aζ1η1 −Dζ2

1 = 0. (16)

Solving the system of equations (15) and (16) with respect to η1 and η2,
we obtain that

η1 =
(B ∓

√
∆)ζ2 − 2Cζ1
2M

, η2 =
(B ±

√
∆)ζ1 − 2Aζ2
2M

.
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Hence, taking into account equation (10),

v = ζ1

(
∂

∂x
+ p

∂

∂z
− C

N

∂

∂p
+
B ±

√
∆

2N
∂

∂q

)
+ ζ2

(
∂

∂y
+ q

∂

∂z
+
B ∓

√
∆

2N
∂

∂p
− A

N

∂

∂q

)
. (17)

It follows now that Qθ1 = 〈X1, X2〉 ∪ 〈X3, X4〉, where

X1 =
∂

∂x
+ p

∂

∂z
− C

N

∂

∂p
+
B −

√
∆

2N
∂

∂q
,

X2 =
∂

∂y
+ q

∂

∂z
+
B +

√
∆

2N
∂

∂p
− A

N

∂

∂q
,

X3 =
∂

∂x
+ p

∂

∂z
− C

N

∂

∂p
+
B +

√
∆

2N
∂

∂q
,

X4 =
∂

∂y
+ q

∂

∂z
+
B −

√
∆

2N
∂

∂p
− A

N

∂

∂q
.

(18)

Put
D1

E(θ1) = 〈X1, X2〉 , D2
E(θ1) = 〈X3, X4〉 .

It is easy to check that D1
E(θ1) and D2

E(θ1) are skew-orthogonal and D1
E(θ1)∩

D2
E(θ1) = {0}. This completes the proof. �

From (18) we see that for a Monge–Ampère equation such that N 6= 0,
the map τ1∗ projects D1

E(θ1) and D2
E(θ1) onto the tangent space to the base

of the bundle τ without degeneration.
It should be noted that if N = 0 (that is, if E is a quasilinear second

order PDE), then the projections τ1∗
(
D1

E(θ1)
)

and τ1∗
(
D2

E(θ1)
)

are one-
dimensional.

Thus an arbitrary hyperbolic Monge–Ampère equation generates two 2-
dimensional skew-orthogonal subdistributions of the Cartan distribution C1

in J1τ .

Proposition 3.2. Let E be a hyperbolic Monge–Ampère equation. Then
θ2 ∈ E if and only if one of the following equivalent conditions holds:

(1) Kθ2 ∩D1(E)θ1 is a straight line,
(2) Kθ2 ∩D2(E)θ1 is a straight line.

Proof. As in the proof of Proposition 3.1, it is enough to prove this propo-
sition for the case N 6= 0.

Let θ2 ∈ E. Then Smblθ2 E ∩ Vθ2 = `θ2(〈v〉) ∪ `θ2(〈ṽ〉), where `θ2(〈v〉)
and `θ2(〈ṽ〉) are different straight lines. It follows that v and ṽ are different
vectors of Kθ2 . They are skew-orthogonal because Kθ2 is a Lagrangian plane
in C(θ1). From definition of Qθ1 we get v, ṽ ∈ Qθ1 . This means that Kθ2

intersects one of the planes D1(E)θ1 and D1(E)θ1 along 〈v〉 and the other
one along 〈ṽ〉.

Let θ2 be a point of J2τ such that Kθ2 intersects the plane D1(E)θ1 along
a straight line, that is, Kθ2 ∩D1(E)θ1 = 〈v〉. Substituting coordinates η1, η2
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of the vector v given by formula (17) into eq. (11), we obtain(
r +

C

N

)
ζ1 +

(
s− B −

√
∆

2N

)
ζ2 = 0,(

s− B +
√

∆
2N

)
ζ1 +

(
r +

A

N

)
ζ2 = 0.

This system is necessarily singular (cf. (9)), whence its determinant is zero,
which is exactly equation (6). Thus, θ2 ∈ E. The case of D2(E)θ1 differs
only by the sign at

√
∆. �

It follows from this proposition that a hyperbolic Monge–Ampère equation
E can be completely reconstructed from any of the associated distributions
Di(E), i = 1, 2.

Thus, every hyperbolic Monge–Ampère equation E is naturally equivalent
to a pair of 2-dimensional, skew-othogonal non-lagrangian subdistributions
D1(E), D2(E) of the Cartan distribution C1 in J1τ . In particular, the equiv-
alence problem for hyperbolic Monge–Ampère equations with respect to
contact transformations is the equivalence problem for pairs of 2-dimensio-
nal, skew-orthogonal non-lagrangian subdistributions of C1 with respect to
contact transformations.

3.3. Bundles of Monge–Ampère equations. Beginning with this sec-
tion, we set M = J1τ .

3.3.1. Bundles of hyperbolic Monge–Ampère equations. Let E be a Monge–
Ampère equation (5). It is identified with the section

SE : x 7→
[
N(x) : A(x) : B(x) : C(x) : D(x)

]
of the trivial bundle

ρ : RP4 ×M −→M ,
(
[p0 : p1 : p2 : p3 : p4], x

)
7→ x ,

where RP4 is the 4-dimensional projective space. Obviously, this identifica-
tion is a bijection of the set of all Monge–Ampère equations onto the set of
all sections of ρ.

Consider the open subset E of the total space of ρ defined by the condition
(14), i.e.,

(p2)2 − 4p1p3 + 4p4p0 > 0 .

Clearly, the section SE corresponding to a hyperbolic Monge–Ampère equa-
tion E takes values in E. Thus we can define the bundle of hyperbolic
Monge–Ampère equations by the formula

π = ρ
∣∣
E
: E −→M ,

(
[p0 : p1 : p2 : p3 : p4], x

)
7→ x .

We use local coordinates x1, . . . , x5, u1, . . . , u4 in the total space E of π,
where x1 = x, x2 = y, x3 = z, x4 = p, x5 = q are the standard coordinates
on M , while the coordinates u1, . . . , u4 on the fibres of π are defined as
follows. Consider the affine hyperplane in R5 defined by the equation p0 = 1.
It generates the local chart in E

[1 : p1 : p2 : p3 : p4] 7→ (p1, p2, p3, p4) .
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Following formulas (18), we introduce the local coordinates u1, . . . , u4 along
the fibres of π by

u1 = −p3 , u2 =
p2 −

√
∆

2
, u3 =

p2 +
√

∆
2

, u4 = −p1 , (19)

where ∆ = (p2)2 − 4p1p3 + 4p4.
These coordinates induce the standard coordinates xj , ui, uij1 , . . . , u

i
j1...jk

,
where 1 ≤ j1 ≤ . . . ≤ jr ≤ 5, in the jet bundle Jkπ.

3.3.2. The lifting of contact transformations. Let ϕ be a contact transfor-
mation defined in M . Then ϕ transforms any Monge–Ampère equation E

to another Monge–Ampère equation Ẽ. In other words, ϕ induces a trans-
formation of the corresponding sections SE 7→ SẼ. Therefore, the contact
transformation ϕ induces a diffeomorphism ϕ(0) of the total space of π such
that the diagram

E
ϕ(0)

−−−−→ E

π

y yπ
M −−−−→

ϕ
M

is commutative (in the domain of ϕ(0)). The diffeomorphism ϕ(0) is called
the lifting of ϕ to the bundle π.

The diffeomorphism ϕ(0), in its turn, can be lifted to a diffeomorphism
ϕ(k) of Jkπ by the formula

ϕ(k)( [S]kx ) =
[
ϕ(0) ◦ S ◦ ϕ−1

]k
ϕ(x)

.

Obviously, for any l > m, the diagram

J lπ
ϕ(l)

−−−−→ J lπ

πl,m

y yπl,m

Jmπ −−−−→
ϕ(m)

Jmπ

is commutative (in the domains of ϕ(l)). The diffeomorphism ϕ(k) is called
the lifting of ϕ to the jet bundle Jkπ.

3.3.3. The lifting of contact vector fields. Let X be a contact vector field in
M and let ϕt be its flow. Then ϕ(k)

t defines a vector field X(k) in Jkπ. This
field is called the lifting of X to Jkπ. Obviously

(πl,m )∗
(
X(l)

)
= X(m) , ∞ ≥ l > m ≥ −1 ,

where X(−1) = X.
It is not hard to prove that the map

X 7−→ X(k)

is a homomorphism of the Lie algebra of all contact vector fields onto the
Lie algebra generated by all vector fields of the form X(k).
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To express X(k) in the coordinates xj , uiσ, we recall that the operator Dj

of total derivative with respect to xj is given by the formula

Dj =
∂

∂xj
+

∑
|σ|≥0

4∑
i=1

uiσj
∂

∂uiσ
, j = 1, 2, . . . , 5 .

The operator of evolution differentiation corresponding to a generating func-
tion ψ(X) = (ψ1(X), . . . , ψ4(X))t is defined by the formula

�ψ(X) =
∑
|σ|≥0

4∑
i=1

Dσ

(
ψi(X)

) ∂

∂uiσ
,

where σ = {j1 . . . jr} , Dσ = Dj1 ◦ . . . ◦ Djr and ψ(X) is defined in the
following way: Let S be a section of π defined in the domain of X, θ1 = [S]1x,
and x = π1(θ1); then

ψ(X)(θ1) =
d

dt
(ϕ(0)

t ◦ S ◦ ϕ−1
t )

∣∣∣
t=0

(x) .

Now, suppose that

X =
5∑
i=1

Xi ∂

∂xi
.

Then the lifting X(∞) is defined by the formula (see [5])

X(∞) =
5∑
j=1

XjDj + �ψ(X) .

From this formula, it follows that

X(k) =
5∑
j=1

XjDk
j + �k

ψ(X) , (20)

where

Dk
j =

∂

∂xj
+

∑
0≤|σ|≤k

4∑
i=1

uiσj
∂

∂uiσ
, �k

ψ(X) =
∑

0≤|σ|≤k

4∑
i=1

Dσ

(
ψi(X)

) ∂

∂uiσ
.

Let f be the generating function of the contact vector field X (see formula
(2)) and θ1 = (x, y, z, p, q, ui, uix, u

i
y, u

i
z, u

i
p, u

i
q ). Then the vector ψ(Xf )(θ1)
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is (ψ1, . . . , ψ4), where

ψ1 = −fu1
z − fxu

1
p − fyu

1
q + (u1

y + qu1
z)fq + (u1

x + pu1
z)fp

+ (−pu1
p − qu1

q + u1)fz + fp2(u1)2 + fq2u
2u3

+ (u2 + u3)fpqu1 + 2fzppu1 + 2fxpu1 + (u2 + u3)fzqp
+ (u2 + u3)fxq + fz2p

2 + 2fxzp+ fx2 ,

ψ2 = −fu2
z − fxu

2
p − fyu

2
q + (u2

y + qu2
z)fq + (u2

x + pu2
z)fp

+ (−pu2
p − qu2

q + u2)fz + fp2u
1u2 + fq2u

2u4 + fypu
1

+ fyqu
2 + fxpu

2 + fxqu
4 + (qu1 + pu2)fzp

+ (u1u4 + (u2)2)fpq + (qu2 + pu4)fzq + fz2pq + fyzp
+ fxzq + fxy,

ψ3 = −fu3
z − fxu

3
p − fyu

3
q + (u3

y + qu3
z)fq + (u3

x + pu3
z)fp

+ (−pu3
p − qu3

q + u3)fz + fp2u
1u3 + fq2u

3u4 + fypu
1

+ fxpu
3 + fyqu

3 + fxqu
4 + (qu1 + pu3)fzp

+ (u1u4 + (u3)2)fpq + (qu3 + pu4)fzq + fz2pq + fyzp
+ fxzq + fxy,

ψ4 = −fu4
z − fxu

4
p − fyu

4
q + (u4

y + qu4
z)fq + (u4

x + pu4
z)fp

+ (−pu4
p − qu4

q + u4)fz + fp2u
2u3 + fq2(u4)2

+ (u2 + u3)fpqu4 + 2fyqu4 + 2fzqqu4 + (u2 + u3)fyp
+ (u2 + u3)fzpq + fz2q

2 + 2fyzq + fy2 .

(21)

3.4. Differential invariants. By Γ we denote the pseudogroup of all con-
tact transformations of the base M of π. It acts on every Jkπ by its lifted
diffeomorphisms.

A function or a vector field or a differential form or any other object
defined in Jkπ is a differential invariant of the action of Γ on Jkπ if for
any ϕ ∈ Γ the lifted transformation ϕ(k) preserves this object. In this work,
these differential invariants are called also differential invariants (of order
k) of Monge–Ampère equations or simply differential invariants (of order
k).

Let E be a Monge–Ampère equation, SE the section of π identified with E,
and I a differential invariant of order k. Then the restriction I|

L
(k)
SE

is denoted

by IE. If a contact transformation f transforms E to Ẽ, then obviously f (k)

transforms IE to IẼ, for any kth order invariant I.
Functions that are differential invariants are also called scalar differential

invariants. By Ak we denote the set of all scalar differential invariants of
order ≤ k. It is clear that Ak is an R-algebra. Then we have a sequence of
inclusions

A0 ⊂ A1 ⊂ . . . ⊂ Ak ⊂ Ak+1 ⊂ . . .

The R-algebra A =
⋃∞
k=0Ak is called the algebra of scalar differential in-

variants of Monge–Ampère equations.
Let X be a contact vector field in M and I a differential invariant of order

k. Then LX(k)(I) = 0, where L stands for the Lie derivative. This means,
in particular, that kth order scalar invariants are 1st integrals of all contact
vector fields lifted to Jkπ. This gives the well-known general method to
calculate scalar differential invariants.
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Obviously, a scalar differential invariant of order k is constant on every
orbit of the action Γ on Jkπ.

Proposition 3.3. (1) Jkπ is an orbit of the action of Γ iff k = 0, 1,
(2) Codimension of a generic orbit of J2π is equal to 2.
(3) Codimension of a generic orbit of J3π is equal to 29.

Proof. Let θk be a generic point of Jkπ and Orbθk
the orbit of the action

Γ on Jkπ passing through θk. Then codim Orbθk
= dim Jkπ − dim Orbθk

.
The dimension of Orbθk

is the dimension of the subspace spanned by all
vectors X(k)(θk). It can be calculated with the help of computer algebra
using formulas (20) and (21). �

From this proposition, we obtain immediately

Corollary 3.4. (1) The algebra of scalar differential invariants A2 is
generated by 2 functionally independent invarints.

(2) The algebra of scalar differential invariants A3 is generated by 29
functionally independent invarints.

4. Differential invariants on J2π

4.1. Base projectors. Since we consider a generic hyperbolic Monge–Am-
père equation E, then

dim(D1(E))(1) = dim(D2(E))(1) = 3

and the distributions (D1(E))(1), (D2(E))(1) are generic. It follows that

dim(D1(E))(2) = dim(D2(E))(2) = 5 .

Suppose that vector fieldsX1, X2 generate the distribution D1(E) and vec-
tor fields X3, X4 generate the distribution D2(E). The 3-dimensional generic
distributions 〈X1, X2, [X1, X2]〉 and 〈X3, X4, [X3, X4]〉 intersect along a one-
dimensional subdistribution D3(E) = 〈X1, X2, [X1, X2]〉∩〈X3, X4, [X3, X4]〉.
Hence, equation E generates a direct sum decomposition

T (M) = D1(E)⊕D2(E)⊕D3(E). (22)

This decomposition generates three projections

Pi : T (M) → Di(E) , i = 1, 2, 3 .

These projections can be viewed as vector-valued 1-forms in the follow-
ing way. Suppose X5 is a vector field generating D3 and a coframe field
{ω1, . . . , ω5} on M is generated by a frame field {X1, . . . , X5} on M . Then

P1 = ω1 ⊗X1 + ω2 ⊗X2 ,

P2 = ω3 ⊗X3 + ω4 ⊗X4 ,

P3 = ω5 ⊗X5 .

(23)

It is clear that these vector-valued differential 1-forms are differential
invariants of E with respect to contact transformations.

Obviously, the initial equation E can be reconstructed completely from
each of the invariants P1 and P2.
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4.2. Coordinate expressions for base projectors. To calculate in coor-
dinates, we fix the vector fields X1, . . . , X5 according to equations (18) and
(19), that is,

X1 =
∂

∂x
+ p

∂

∂z
+ u1 ∂

∂p
+ u2 ∂

∂q
, X2 =

∂

∂y
+ q

∂

∂z
+ u3 ∂

∂p
+ u4 ∂

∂q
,

X3 =
∂

∂x
+ p

∂

∂z
+ u1 ∂

∂p
+ u3 ∂

∂q
, X4 =

∂

∂y
+ q

∂

∂z
+ u2 ∂

∂p
+ u4 ∂

∂q
.

(24)

Obviously,

X5 = λ1X1 + λ2X2 + κ[X1, X2] = λ3X3 + λ4X4 + χ[X3, X4] . (25)

By easy calculation we get

λ3 = λ1 , λ4 = λ2 , χ = −κ 6= 0 ,

where

λ1 =
1

u2 − u3

(
(u2 + u3)y + q(u2 + u3)z + u4(u2 + u3)q

− 2(u4
x + pu4

z + u1u
4
p)− (u2 + u3)u4

q + u3u2
p + u2u3

p

)
, (26)

λ2 =
1

u2 − u3

(
(u2 + u3)x + p(u2 + u3)z + u1(u2 + u3)p

− 2(u1
y + qu1

z + u4u
1
q)− (u2 + u3)u1

p + u2u3
q + u3u2

q

)
(27)

provided we normalize X5 by the requirement κ = 1.
Consider the brackets of the vector fields X1, . . . , X5. We have

[Xj , Xk] =
5∑
i=1

bijkXi .

Obviously,
bijk = −bikj . (28)

From (25) and κ = 1, we have

b112 = −λ1 , b212 = −λ2 , b312 = 0 , b412 = 0 , b512 = 1 ,

b134 = 0 , b234 = 0 , b334 = λ1 , b434 = λ2 , b534 = −1 .
(29)

By our definition, the form ω5 is a contact form on M . Then dω5 is a
symplectic form and 〈X1, X2〉 and 〈X3, X4〉 are skew orthogonal with respect
to this form. It follows

b513 = b514 = 0 , b523 = b524 = 0 . (30)

Consider the differentials of functions bijk. We define cijk,r as coefficients
in the decomposition

dbijk =
5∑
r=1

cijk,rω
r .

From (28), we have
cijk,r = −cikj,r . (31)
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From (29) and (30), we get

c112,r = −λ1
r , c212,r = −λ2

r , c312,r = 0 , c412,r = 0 , c512,r = 0 ,

c134,r = 0 , c234,r = 0 , c334,r = λ1
r , c434,r = λ2

r , c534,r = 0 ,

c513,r = 0 , c514,r = 0 , c523,r = 0 , c524,r = 0 ,

(32)

where the functions λ1
r and λ2

r are defined by

dλ1 =
5∑
r=1

λ1
rω

r , dλ2 =
5∑
r=1

λ2
rω

r .

4.3. Curvatures. Using formulas (3), (4) and the direct sum decomposition
(22), it is easy to compute the curvature forms of the distributions D1

E, D2
E,

D1
E ⊕D3

E, D1
E ⊕D3

E, and C, which are

R1 = −ω1 ∧ ω2 ⊗X5 ,

R2 = ω3 ∧ ω4 ⊗X5 ,

R1
1 = −(b315ω

1 + b325ω
2) ∧ ω5 ⊗X3 − (b415ω

1 + b425ω
2) ∧ ω5 ⊗X4 ,

R1
2 = −(b135ω

3 + b145ω
4) ∧ ω5 ⊗X1 − (b235ω

3 + b245ω
4) ∧ ω5 ⊗X2 ,

R = R1 + R2 ,

(33)

respectively. It is clear that these curvature forms are differential invariants
of E with respect to contact transformations.

Proposition 4.1. Every 2-form [[Pi,Pj ]], i, j = 1, 2, 3, is a linear combina-
tion of the curvature forms.

Proof. By direct calculation we obtain formulas

[[P1,P2]] = 1
2(−[[P1,P1]]− [[P2,P2]] + [[P3,P3]]) ,

[[P1,P3]] = 1
2(−[[P1,P1]] + [[P2,P2]]− [[P3,P3]]) ,

[[P2,P3]] = 1
2([[P1,P1]]− [[P2,P2]]− [[P3,P3]])

and

[[P1,P1]] = −2(R1
2+R1), [[P2,P2]] = −2(R1

1+R2), [[P3,P3]] = −2(R1+R2).

This completes the proof. �

4.4. Scalar invariants on J2π. We consider the following three invariant
5-forms with values in D3

E = 〈X5〉:
1
2

(
R1

2 R1

) (
R1

2 R1

)
= (b235b

1
45 − b135b

2
45)ω

1 ∧ . . . ∧ ω5 ⊗X5 ,

1
2

(
R1

1 R2

) (
R1

1 R2

)
= (b415b

3
25 − b315b

4
25)ω

1 ∧ . . . ∧ ω5 ⊗X5 ,(
R1

2 R1

) (
R1

1 R2

)
= (b315b

1
35 + b415b

1
45

+ b325b
2
35 + b425b

2
45)ω

1 ∧ . . . ∧ ω5 ⊗X5 .

(34)

Obviously, coefficients of proportionality between them are scalar differential
invariants. Therefore, assuming

b315b
1
35 + b415b

1
45 + b325b

2
35 + b425b

2
45 6= 0 , (35)



MONGE–AMPÈRE EQUATIONS 15

we get the following scalar differential invariants:

I1 =
b235b

1
45 − b135b

2
45

b315b
1
35 + b415b

1
45 + b325b

2
35 + b425b

2
45

,

I2 =
b415b

3
25 − b315b

4
25

b315b
1
35 + b415b

1
45 + b325b

2
35 + b425b

2
45

.

(36)

are scalar differential invariants on J2π.

Proposition 4.2. The scalar invariants I1 and I2 are functionally indepen-
dent.

Proof. By coordinate calculation. �

Using Corollary 3.4, we get

Theorem 4.3. The algebra of scalar differential invariants on J2π is gen-
erated by the invariants I1 and I2.

5. Differential invariants on J3π

5.1. The complete parallelism. Applying the exterior differential to sca-
lar invariants I1 and I2, we obtain the invariant differential 1-forms dI1 and
dI2 on J3π. It makes possible to construct the following invariant differential
1-forms on J3π:

Ω1 = P1 dI1 = X1(I1)ω1 +X2(I1)ω2 ,

Ω2 = P1 dI2 = X1(I2)ω1 +X2(I2)ω2 ,

Ω3 = P2 dI1 = X3(I1)ω3 +X4(I1)ω4 ,

Ω4 = P2 dI2 = X3(I2)ω3 +X4(I2)ω4 ,

Ω5
1 = P3 dI1 = X5(I1)ω5 , Ω5

2 = P1 dI2 = X5(I2)ω5 .

(37)

We suppose that E is a generic equation. In particular, we may assume that

X5(I1) 6= 0 , X5(I2) 6= 0 , (38)

and

∆1 =
∣∣∣∣X1(I1) X2(I1)
X1(I2) X2(I2)

∣∣∣∣ 6= 0 , ∆2 =
∣∣∣∣X3(I1) X4(I1)
X3(I2) X4(I2)

∣∣∣∣ 6= 0 . (39)

This means that the collections of differential 1-forms {Ω1, . . . ,Ω4,Ω5
1} and

{Ω1, . . . ,Ω4,Ω5
2} are invariant coframes inM . Each of these coframes defines

the invariant complete parallelism on M .
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The following invariant frames {Y1, . . . , Y4, Y
1
5 } and {Y1, . . . , Y4, Y

2
5 }, whe-

re

Y1 =
1

∆1

(
X2(I2)X1 −X1(I2)X2

)
,

Y2 =
1

∆1

(
−X2(I1)X1 +X1(I1)X2

)
,

Y3 =
1

∆2

(
X4(I2)X3 −X3(I2)X4

)
,

Y4 =
1

∆2

(
−X4(I1)X3 +X3(I1)X4

)
,

Y 1
5 =

1
X5(I1)

X5 , Y 2
5 =

1
X5(I2)

X5 ,

(40)

are dual to the above-mentioned coframes.

5.2. Scalar invariants on J3π.

5.2.1. The invariant 1-forms Ω5
1 and Ω5

2 obtained above are contact forms
on M . Therefore the coefficient of proportionality

I3 =
X5(I1)
X5(I2)

between these forms is a scalar differential invariant on J3π.
We already obtained numerous invariant objects of third order: functions,

differential form, differential vector valued form, and vector fields. Apply-
ing operations of tensor algebra and Frölicher–Nijenhuis brackets to these
objects, we can construct new invariant objects of third order the same as
above.

Many scalar differential invariants can be obtained as coefficients of linear
dependence between these objects. In this way, we already obtained the
invariants I1, I2, I3.

Another way to construct scalar invariants uses expression of invariant
objects with respect to an invariant base. Components of an invariant object
with respect to an invariant base are scalar differential invariants.

Finally, invariant objects can possess their own scalar invariants. For
example, the determinant, the trace, and the other coefficients of the char-
acteristic polynomial of an invariant linear operator are scalar differential
invariants. Consider the invariant linear operators

∆1 = Y5 R1
1 : D → DD2

E
, ∆2 = Y5 R1

2 : D → DD1
E
,

where D is the module of all vector fields on M and DD1
E

and DD2
E

are
its submodules of all vector fields belonging to D1

E and D2
E respectively.

Consider the invariant operator

∇1 = ∆2

∣∣
D

D2
E

◦ ∆1

∣∣
D

D1
E

: DD1
E
→ DD1

E
.
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Using (33) and (40), we get the following scalar differential invariants :

I4 = tr(∇1) =
1

X5(I1)2
(b315b

1
35 + b415b

1
45 + b325b

2
35 + b425b

2
45) ,

I5 = det(∇1) =
1

X5(I1)4
(b235b

1
45 − b135b

2
45)(b

4
15b

3
25 − b315b

4
25) .

(41)

5.2.2. Consider the invariant operator

∇2 = ∆1

∣∣
D

D1
E

◦ ∆2

∣∣
D

D2
E

: DD2
E
→ DD2

E
.

The characteristic polynomials of this operator and the operator ∇1 are the
same.

Suppose v1 and v2 are eigenvectors for the operators ∇1 and ∇2 respec-
tively. Then obviously, ∆1(v1) and ∆2(v2) are eigenvectors for ∇2 and ∇1

respectively.
From (36) and (41), we get that the discriminant of the characteristic

polynomial of the operator ∇i is

(b315b
1
35 + b415b

1
45 + b325b

2
35 + b425b

2
45)

2

X5(I1)4
(1− 4I1I2) .

Thus from (35) and (38), we obtain

Theorem 5.1. (1) The operator ∇i has two different eigenfunctions, if
1− 4I1I2 > 0.

(2) The operator ∇i has a unique eigenfunction, if 1− 4I1I2 = 0.
(3) The operator ∇i has no eigenfunctions, if 1− 4I1I2 < 0.

Thus, the set of all generic hyperbolic Monge–Ampère equations is divided
onto three types: E has type ”h” if 1−4I1

EI
2
E > 0, E has type ”p” if 1−4I1

EI
2
E =

0, and E has type ”e” if 1− 4I1
EI

2
E < 0.

5.2.3. Return to a construction of scalar differential invariants. Let us use
the above-mention second way to construct these invariants. Consider in-
variant vector valued 2-forms on J3π. From proposition 4.1 they are linear
combinations of the curvature forms. Therefore we have 8 invariant 2-forms

R1 dI1 = I6Ω1 ∧ Ω2 ,

R1 dI2 = I7Ω1 ∧ Ω2 ,

R2 dI1 = I8Ω3 ∧ Ω4 ,

R2 dI2 = I9Ω3 ∧ Ω4 ,

R1
1 dI1 = I10Ω1 ∧ Ω5 + I11Ω2 ∧ Ω5 ,

R1
1 dI2 = I12Ω1 ∧ Ω5 + I13Ω2 ∧ Ω5 ,

R1
2 dI1 = I14Ω3 ∧ Ω5 + I15Ω4 ∧ Ω5 ,

R1
2 dI2 = I16Ω3 ∧ Ω5 + I17Ω4 ∧ Ω5 ,
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Taking into account the invariant I3, from the first two equations, we
obtain the following scalar differential invariants on J3π

I6 =
∆1

X5(I1)
, I7 =

∆2

X5(I1)
.

By the same way we can construct new scalar differential invariants using
invariant vector valued 3-forms, 4-forms, and 5-forms. For example the 3-
forms [[Pi,Rj ]] or [[Pi,R1

j ]], the 4-forms [[Pi, (R1
j R1

k)]], the 5-forms [[Pi,R1
j ]]

[[Pk,R1
l ]], etc. According to ”the principle of n-invariants”, it is enough to

know five functionally independent scalar invariants I1, . . . , I5 on J∞π to
solve the equivalence problem for Monge–Ampère equations.

The following statement can be proved by calculations in coordinates.

Theorem 5.2. Invariants I1, I2, I3, I4, and I5 are functionally indepen-
dent.

6. The equivalence problem

Let E be generic hyperbolic Monge–Ampère equation considering as a
section of the bundle π. Then the invariants I1

E, . . . , I
5
E form the coordinate

system in M . In terms of these coordinates, the 1-forms Ω1, . . . ,Ω5 defining
the complete parallelism on M have the form

Ωi =
5∑
j=1

Ωi
j(I

1
E, . . . , I

5
E)dIj , i = 1, . . . , 5 .

Theorem 6.1. The equivalence class of the equation E with respect to con-
tact transformations is defined by the functions Ωi

j(I
1
E, . . . , I

5
E) uniquely.

Proof. Let Ẽ be another Monge–Ampère equation such that there exist a
contact transformation f transforming it to E. Then obviously that the
functions Ωi

j(I
1
E, . . . , I

5
E) and Ω̃i

j(I
1
Ẽ
, . . . , I5

Ẽ
) are the same for all i and j.

Let Ẽ be a Monge–Ampère equation such that the functions Ωi
j(I

1
E, . . . , I

5
E)

and Ω̃i
j(I

1
Ẽ
, . . . , I5

Ẽ
) are the same for all i and j and let. Suppose x =

(x1, . . . , x5) is the the standard coordinate system in M , IE = (I1
E, . . . , I

5
E)

and IẼ = (I1
Ẽ
, . . . , I5

Ẽ
) are invariant coordinate systems in M for E and Ẽ

respectively. Then the transformation x ◦ I−1

Ẽ
◦ IE ◦ x is contact and it

transforms Ẽ to E. �

7. Coordinates in the bundle of Monge–Ampère equations

In this section, we introduce local coordinates that are convenient to
calculate the above obtained differential invariants.

7.1. Several proofs in this paper depend on calculations, which are simply
impossible to do in terms of standard jet coordinates on Jk(π). This is why
we suggest a different set of coordinates on Jk(π).

Lemma 7.1. Denote

uki1...ih = Xi1 . . .Xihu
k, i1 ≤ . . . ≤ ih. (42)
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Functions xi, uk, uki1...ih, i1 ≤ . . . ≤ ih, h ≤ n, constitute a coordinate system
on Jn(π). Moreover, the standard jet coordinates on Jn(π) are rational
functions of the coordinates (42).

Proof. The statement is directly verifiable for n = 2. To express Di1...inu
k in

terms of coordinates (42) for n > 2, one exploits the following obvious facts:
Firstly, fields Di are linear combinations of fields Xi with coefficients from
C∞J1(π); secondly, the coefficients B

j
i1i2

are functions on J2(π); thirdly
Xi2Xi1f = −B

j
i1i2

Xjf + Xi1Xi2f for every function a from C∞Jn(π). �

Every invariant obtained so far was expressible in terms of the quantities
bkij and ckij,r.

Below, we construct coordinate system in J3 generated by functionally
independent coefficients bkij and ckij,r.....

References

[1] D.V. Alekseevskiy, A.M. Vinogradov and V.V. Lychagin, Basic ideas and concepts of
differential geometry. in: Geometry, I Encyclopaedia Math. Sci. 28, Springer, Berlin,
1991, 1–264.
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