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ABSTRACT. In this paper, we construct scalar differential invariants of
Monge—Ampere equations in general position.

1. INTRODUCTION

With this paper we start a systematic study of differential invariants of
Monge-Ampere equations aiming at the classification problem, methods of
integrations and other applications. We are interested in equations in two
independent variables (the classical case). Monge-Ampeére equations merit
a special attention due to a large spectrum of various applications, first of
all, in differential geometry and mathematical physics. Moreover, they form
a natural testing area for new methods emerging in the modern theory of
nonlinear PDE’s.

In spite of more than 200 years of history of Monge-Ampere equations
and numerous publications devoted to them it would be an exaggeration
to say that their nature is well understood. An important success was es-
tablishing of the existence and uniqueness theorems for them (see [6, 3] for
local aspects and [10] for global ones). Modern formulation of the classical
Monge’s method of solution was given by Matsuda [7, 8] and Morimoto [9].
The hopes are that differential invariants could illuminate these and many
other aspects of the theory of Monge-Ampere equations.

According to [12] (see also [1]) scalar differential invariants provide key
to solving the classification problem for any kind of geometrical structures.
In fact, geometrical structures of a given type are classified by solutions
of a naturally associated classifying (differential) equation, which describes
interrelations among the corresponding scalar differential invariants. More
exactly, scalar differential invariant are smooth functions on the classifying
diffiety, which is the infinite prolongation of the classifying equation. This
diffiety has, generally, singularities and its singular strata classify those geo-
metrical structures that possess nontrivial symmetries. Each of these strata
is also an infinitely prolonged differential equation in a lesser number of inde-
pendent variables. For instance, homogeneous structures correspond to the
zero-dimensional case. So, the classification problem consists of a complete
description of all strata composing the classifying diffiety and, therefore,
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presuppose a complete symmetry analysis of the geometric structures under
consideration. The interested reader will find an illustration of the above
said in [13] where plane 3-webs, a rather simple geometrical structure, is
considered.

In this paper we interpret Monge-Ampere equations as certain geometrical
structures on 5-dimensional contact manifolds and look for their differential
invariants, not only scalar, with respect the group of contact transforma-
tions. Here we limit ourself to the case of generic hyperbolic equations. This
is because of two reasons. First, the study of singular strata presupposes
that of the generic one. Second, for the hyperbolic equations differential
invariants are easier visible due to existence of bicharacteristics.

Differential invariants found in this paper give a solution of the classifica-
tion problem for generic hyperbolic equations. Unfortunately, this solution
is of a theoretical nature and requires a substantial computer support in
analysis of concrete cases. So, a further simplification work is necessary to
improve its efficiency.

Differential invariants for elliptic and parabolic Monge-Ampere equations
can be obtained more or less straightforwardly by following the approach
developed in this paper. This and a study of singular strata will be the
subject of subsequent publications.

2. PRELIMINARIES

Below, all manifolds and maps are supposed to be smooth. By | f]l; , k=
0,1,2,...,00, we denote the k-jet of a map f at a point p, by R we denote
the field of real numbers, and by R™ we denote the n-dimensional arithmetic
space.

2.1. Jet bundles. Here we recall necessary definitions and facts about jet
bundles, see [4].
Let M be an n-dimensional manifold, let £ be an n + m-dimensional
manifold, and let
B — M.

be a bundle. By
e JEr — M, ﬂ'k:[S]lng, k=0,1,2,...

denote the bundle of all k-jets of sections of w. For any [ > m > 0, the
natural projection is defined as

Tm Jn — Jmr, Tm [S]ﬁ2 = [S]

Any section S of 7 generates the section j;.S of the bundle 75 by the formula

JeS i p [S]l;.
By definition, put
LY =Tm j;S.

Let 041 be an arbitrary point of J**'7 0y = 741 k(0k+1), and Tp, (J*7)
the tangent space to J*m at the point 6. Then ), defines the subspace
Ko, ., C Ty, (J*7) by the formula

Koy, = Tp (LE).
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Clearly, the correspondence 61 +— Ky, , is a bijection. Therefore we
identify 0x41 with Ky, . It is easy to prove that

Ty, (J*7) = Ko, ,, & Tp, (7, (p)) - (1)

Consider all submanifolds of the form L’g containing 6. Subspace spanned
by their tangent spaces Tp, (L%) is denoted by €(fx) and it is called the
Cartan plane at 0. The distribution

Cp : O — C(01)

is called the Cartan distribution on J*w. The distribution Cj, k > 1, can be
defined as the kernel of the Cartan form

Ur = pro o (Mg p—1)x ,

where pry : Tp, , (J¥717) — Tgkil(w,;_ll(p)) is the projection generated by
direct sum decomposition (1).

2.2. The contact structure. Consider the trivial bundle
T:RExR—R?, 7:(z,y,2)— (z,y).

By ,y,2, p= 2z, ¢ = 2y, " = Zzz, S = Zagy, t = 2yy We denote the standard
coordinates in J27.

The Cartan distribution Cy on Jl7 is a contact structure on Jir. The
corresponding contact 1-form U; has the canonical form

Uy =dz—pdr—qdy.

in the standard coordinates.

A diffeomorphism ¢ : J'7 — J'7 is called a contact transformation if
it preserves the Cartan distribution. Obviously, a diffeomorphism ¢ is a
contact transformation iff there exist a nowhere vanishing function A such
that

(p*(U 1) =AU 1-
Any contact transformation ¢ can be lifted to the diffeomorphism
gog) cJAr — J%r
by the formula

905'1) 102 = K02 = (P*(KGQ) = ~2 = 805'1)(92) .

If ¢ is defined on an open set V C J'7, then <p(71) is defined on an open,

everywhere dense subset of 7, Lv).

A vector field X in J7 is a contact vector field if its flow ¢; consists of
contact transformations. Clearly, X is a contact vector field iff there exist
a function A such that

Lx(Uy) =AUy,

where Lx is the Lie derivative with respect to X.
There exists a natural bijection of the set of all contact vector fields in
J'7 onto the set of all functions in J'7. It is defined by the formula

X—f=X1U;.
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The function f = X _1Uj is called the generating function of a contact vector
field X. The contact vector field X corresponding to f is denoted by Xj.
In the standard coordinates, the field X is given by the formula

0 0 0 0 0
Xf = _fp%_fqaiy'i‘(f_pfp_q(fq)a'f'(fx‘i‘pfz)aip+(fy+sz)87q (2)

2.3. Operations over vector-valued forms. Let M be a smooth n-di-
mensional manifold, A*(M) the C*°(M)-module of differential i-forms on
M,i=1,2,..., and D(M) the C*°(M)-module of vector fields on M. Let
a € A¥(M), B € A"(M), and X,Y € D(M). Then the Frolicher-Nijenhuis
bracket [-,-] of the vector-valued forms o ® X and §® Y is defined by the
formula

[a® X, Y]
=aAB® X, Y]+aANX(B) QY -Y()AB®X
+(-DFdan(X18) @Y — (-D)*Y Ja)AdB® X,
see [2]. The contraction _of forms a®X and f®Y is defined by the formula
(@ X)1BRY)=aN(XIF) Y.

2.4. Distributions and their curvatures. The following simple construc-
tion allows one to associate a vector valued 2-form with a projector. Namely,
let P,@Q € D(M) be endomorphisms of the C°°(M )-module D(M) such that
QP = 0. Then

Qo p(X,Y) =Q[P(X),P(Y)], X,Y € D(M), (3)
obviously, is skew-symmetric and C° (M )-bilinear, i.e., a vector valued form.
More precisely, it takes values in Im @ C D(M). If P: D(M) — D(M) is a

projector, i.e., P> = P, then the associated curvature form of P is defined
to be

Rp=Qr-pp (4)
with I = idD(M)-

Let D be a distribution on M. Then by DM we denote the distribution
generated by all vector fields X and [X,Y], where X, Y € D. Setting D) =
D, we define DY = 0,1,..., inductively by the formula DD =
(@(r) )(1),

3. HYPERBOLIC MONGE-AMPERE EQUATIONS

3.1. Monge—Ampeére equations. The Monge-Ampere equation is a par-
tial differential equation of the form

N (2gazyy — zgy) + Azgy + B2y +Czyy + D =0, (5)
where z, y are independent variables, z is a dependent variable, z,, =
0%2/02%, 24y = 0%2/02 Oy, 24y = 0%2/0y?, and coefficients N, A, B, C, D
are functions of z, y, 2z, 2z, = 02/0x and z, = 0z/0y.

We identify equation (5) with the submanifold € of the jet bundle J?7
determined by the equation

N(rt —s*) + Ar + Bs+Ct + D = 0. (6)
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Obviously,
m1(8) = J'7.
Let 03 € €, 721(02) = 61, and Fy, be the fibre of the projection 75 over
the point #; € J'7. Then the subspace

Smbly, € = Ty, & N Ty, Fy,,

where T, € is the tangent space to € at 0 is called the symbol of the equation
€ at the point 03 € €. In terms of standard coordinates, Smblg, € is described
by the linear equation

N(tF + rt — 2s5) + AF + Bs + Ct = 0, (7)

where 7, §, t are the standard coordinates in Ty, generated by the standard
coordinates on J?7.

A point 65 € € can be elliptic, parabolic, or hyperbolic. To introduce
these notions, let us consider a one-dimensional subspace P C €(f;) such
that (71).P # 0. By definition, put

I(P)={062€ Fy, | P C Ky, }.

The submanifold [(P) is called a 7-ray. In terms of standard coordinates,
let 6, = (x,y,2,p,q), P = (v) and

0 0 0 0 0
U_Cl%%_@aiy—l—'u@_‘_m@ip—i—?haﬁq' (8)
Then (71)«P # 0 means that
(ClagQ) 7& (070)7 (9)

v € C(A1) means that
p=Gp+ G, (10)
and P C Ky, means that
=(r + (28,
{ m=ar+¢g ()
n2 = Gis + Gt
where 7, 5,t are the standard coordinates of 0 in the fibre Fp,. From system
(11), we see that [(P) is an affine straight line in Fy,. By ¢p,(P) we denote
the tangent space Tp,l(P) to [(P) at the point 02 € [(P). We call it a I-ray

subspace. In terms of the standard coordinates 7,3, in T, Fy,, vectors of
Ly, (P) satisfy

QT+ (25 =0,
. - (12)
Cls + CQt = 07
Obviously, ¢s,(P) is spanned by the vector
(fv s, E) = (<22a —C1(2, C12 ) . (13)

Taking into account (9), we observe that all 1-ray subspaces form the cone
Vo, = {7t — 5 =0}

in the tangent space Ty, Fp,. This cone is called the cone of singular square
forms. Obviously, the intersection Smblg, € N Vy, is either zero or a single
1-ray subspace or two 1-ray subspaces. Correspondingly, the point 05 € € is
then called elliptic or parabolic or hyperbolic. It is not hard to prove that a
contact transformation takes an elliptic, parabolic, or hyperbolic point to an
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elliptic, parabolic, or hyperbolic point, respectively. The equation € is called
elliptic, parabolic or hyperbolic if all its points are elliptic, parabolic or hy-
perbolic, respectively. In this work, we consider hyperbolic Monge—Ampére
equations only. It is easy to prove that £ is hyperbolic iff its coefficients
satisfy the condition

A= DB?—-4AC +4ND > 0. (14)

3.2. Skew-orthogonal distributions. Following [11], we show that a hy-
perbolic Monge—Ampere equation is equivalent to a pair of skew-orthogonal
two-dimensional distributions in the Cartan distribution on J'7.

Let 01 be an arbitrary point of J'7. By Qy, we denote the union of all
one-dimensional subspaces P of C(f;) such that 7. P # 0 and the 1-ray [(P)
is tangent to € at least at one point.

Proposition 3.1. Let € be a hyperbolic Monge—Ampére equation. Then Qg,
is the union of two-dimensional subspaces D(01) and D%(01) of the Cartan
plane C(61), so that
(1) €(61) = D(61) & DE(61),
(2) DE(61) and D%(61) are skew-orthogonal with respect to the symplectic
form dUy = dp N dx + dg N\ dy on C.

Proof. We prove this proposition for Monge—Ampere equations such that
N # 0. The proof for N = 0 follows from the fact that every Monge—
Ampere equation can be transformed to one with N # 0 by an appropriate
contact transformation.

Let v € Qp, and P = (v). The condition for I(P) to be tangent to € can
be written in the following way. Suppose v is described by equation (8).
Then the vector (¢3, —(1(2, (?) is tangent to [(P). Now using (7) we deduce
that [(P) is tangent to & iff

M(r¢2 +25CG +tC2) + A2 — BGG +CE =0.

Taking into account that the coordinates (; and 7; of v are connected by
equations (11), we reduce this equation to the form

M (¢ 4 Come) + AC — Bl + CG = 0. (15)

Taking into account that ¢; and (3 are connected by equation (9), we put
(1 # 0 (the case (3 # 0 is analogous). Then from (11) we get

1 1
7’:*2(771(1—772C2+C22t)7 5= —(m — Cat).
C1 Cl
Substituting these expressions for r and s in equation (6) and taking into
account equation (15), we obtain the equation

Mn3 + (AG — BG)na — AGim — DG = 0. (16)

Solving the system of equations (15) and (16) with respect to 71 and 72,
we obtain that

(BF VA) —20¢ . (B+VA)G —2A% ‘

1= oM R oM
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Hence, taking into account equation (10),
0 o Co0 BXVAOI
v=Cz—trr ot
oz 0z NOp 2N 0Oq

8 O BTVAO A
gl 2Tvad A9 g
+C2<8y+q82+ N op N8q> (17)

It follows now that Qp, = (X1, X2) U (X3, X4), where
9 9 Cd B-vVAQI

M=o TP T Nap T aN ag
oD, 0 BtVEo 40

oy 0z 2N 0Op NOq’ (18)
oo 0.0 CO BrVED

Ox 0z N op 2N 9q’
w0, 0 BV 40

oy 0z 2N Jp N Oq

Put
DE(6h) = (X1, Xa), DE(61) = (X3, X4).

It is easy to check that D} (61) and D%(6;) are skew-orthogonal and D} (61)N
D%(61) = {0}. This completes the proof. O

From (18) we see that for a Monge-Ampere equation such that N # 0,
the map 71, projects Dg(61) and D%(61) onto the tangent space to the base
of the bundle 7 without degeneration.

It should be noted that if N = 0 (that is, if € is a quasilinear second
order PDE), then the projections 71,(Dg(61)) and 71.(D%(61)) are one-
dimensional.

Thus an arbitrary hyperbolic Monge-Ampere equation generates two 2-
dimensional skew-orthogonal subdistributions of the Cartan distribution €
in Jir.

Proposition 3.2. Let & be a hyperbolic Monge—Ampeére equation. Then
0y € € if and only if one of the following equivalent conditions holds:

(1) Ko, N DL(E)g, is a straight line,
(2) Ko, N D?(E)g, is a straight line.

Proof. As in the proof of Proposition 3.1, it is enough to prove this propo-
sition for the case N # 0.

Let 03 € £ Then Smbly, € N Vg, = £y, ((v)) U Ly, ((D)), where £y, ({v))
and £y, ((0)) are different straight lines. It follows that v and ¢ are different
vectors of Ky,. They are skew-orthogonal because Kjp, is a Lagrangian plane
in C(f1). From definition of Qy, we get v, v € Qp,. This means that Kjp,
intersects one of the planes D!(&)y, and DI(€)y, along (v) and the other
one along (7).

Let 65 be a point of J27 such that Kjp, intersects the plane D1(€)y, along
a straight line, that is, K, N D!(&)y, = (v). Substituting coordinates 1y, 72
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of the vector v given by formula (17) into eq. (11), we obtain

<T+ g)(ﬁ- (8— B;]\\,/Z>CQ = 0,

(8— B;\\T/Z>C1 + (T-l— ]13)(2 = 0.

This system is necessarily singular (cf. (9)), whence its determinant is zero,

which is exactly equation (6). Thus, 65 € €. The case of D?(€)g, differs
only by the sign at VA. O

It follows from this proposition that a hyperbolic Monge—Ampere equation
€ can be completely reconstructed from any of the associated distributions
D), i=1,2.

Thus, every hyperbolic Monge—Ampere equation € is naturally equivalent
to a pair of 2-dimensional, skew-othogonal non-lagrangian subdistributions
DY(E), D?(&) of the Cartan distribution C; in J'7. In particular, the equiv-
alence problem for hyperbolic Monge—Ampere equations with respect to
contact transformations is the equivalence problem for pairs of 2-dimensio-
nal, skew-orthogonal non-lagrangian subdistributions of €; with respect to
contact transformations.

3.3. Bundles of Monge—Ampére equations. Beginning with this sec-
tion, we set M = J'r.

3.3.1. Bundles of hyperbolic Monge—Ampere equations. Let € be a Monge—
Ampere equation (5). It is identified with the section
Se:x— [N(z): A(z) : B(z) : C(z) : D(z)]
of the trivial bundle
p:RPY*x M — M, ([pozpl:p2:p?’:p4},as)+—>JU7

where RP* is the 4-dimensional projective space. Obviously, this identifica-
tion is a bijection of the set of all Monge—Ampere equations onto the set of
all sections of p.

Consider the open subset E of the total space of p defined by the condition
(14), i.e.,

(p%)2 — dp'p® + 4p*p° > 0.

Clearly, the section S¢ corresponding to a hyperbolic Monge—Ampere equa-
tion € takes values in E. Thus we can define the bundle of hyperbolic
Monge—Ampere equations by the formula

W:p‘E:E—>M, ([po:p1:p2:p3:p4],x)»—>x.

We use local coordinates z', ..., 2%, u', ..., u? in the total space F of =,
where 2! =z, 22 =y, 23 = 2, 2* = p, 2° = ¢ are the standard coordinates
on M, while the coordinates u!, ..., u* on the fibres of = are defined as

follows. Consider the affine hyperplane in R® defined by the equation p° = 1.
It generates the local chart in F

[1:ph:p?:p Y e (0, 0% P, ).
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Following formulas (18), we introduce the local coordinates u!, ..., u* along
the fibres of 7 by

2 A 2 A
1 3 2P 2\F7 I B +2\/>7 I — (19)

where A = (p?)2 — 4p'p® + 4p*.
These coordinates induce the standard coordinates a/, u’, uf ..., uj
where 1 < j; < ... < j, <5, in the jet bundle Jkr.

3.3.2. The lifting of contact transformations. Let ¢ be a contact transfor-
mation defined in M. Then ¢ transforms any Monge-Ampere equation &
to another Monge—Ampere equation €. In other words, ¢ induces a trans-
formation of the corresponding sections Sg — Sz. Therefore, the contact
transformation ¢ induces a diffeomorphism ¢(© of the total space of 7 such
that the diagram

(0)
ELE

wl lw
M — M
®

is commutative (in the domain of ¢(?)). The diffeomorphism ¢(© is called
the lifting of ¢ to the bundle .
The diffeomorphism <p(0), in its turn, can be lifted to a diffeomorphism
o) of JE71 by the formula
e ([815) = [¢@ o S0p™]

T

k
o(z)
Obviously, for any [ > m, the diagram

)
Jir 22— Jx

ﬂ—l,ml J/T‘-l,m

J"r —— JMr

is commutative (in the domains of (). The diffeomorphism ¢*) is called
the lifting of ¢ to the jet bundle J*r.

3.3.3. The lifting of contact vector fields. Let X be a contact vector field in

M and let ¢; be its flow. Then apgk) defines a vector field X*) in J*7z. This
field is called the lifting of X to J*m. Obviously

where X(-1) = X
It is not hard to prove that the map
X — X*®

is a homomorphism of the Lie algebra of all contact vector fields onto the
Lie algebra generated by all vector fields of the form X (*),
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To express X *) in the coordinates z7, u’ , we recall that the operator D;

of total derivative with respect to z7 is given by the formula

Zzajai’j_lz 9.

|o|>0 =1

The operator of evolution differentiation corresponding to a generating func-
tion ¢¥(X) = (Y1(X),...,*(X))! is defined by the formula

ZZD (X W,

|o|>0 i=1

where 0 = {j1...jr}, Dy = Dj, o...0 Dj and 9(X) is defined in the

following way: Let S be a section of 7 defined in the domain of X, §; = [S]L,

and z = 71(01); then

AV oSoh)| (@),

PX)(O) = 20

Now, suppose that

X = Z W.

Then the lifting X () is defined by the formula (see [5])
5 .
X(Oo) = ZX]D]' + Sw(X) .
j=1
From this formula, it follows that
ZX DS +9% ), (20)
j=1

where

j 8x1+ Z Euaﬂaui’ Z ZD (v'(x

0<|o|<k i=1 0<|o|<k i=1

Let f be the generating function of the contact vector field X (see formula
(2)) and 01 = (=, y, 2z, p, ¢, ut, ul, ul, ul, ul tg ). Then the vector 1 (Xy)(61)

» Py 'y Tz 'po
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is (!, ..., ¥*), where

¢1=-#@—h%—@%+www@m+Wkw@m
+ (—puy — qui + u') fo + fr2(u')? + feu?u?
+ (u2 + u3)quu1 + 2fpput + Qfxpul + (u2 + u3)fqu
+ (U2 +u3) foq + fo20® + 2fezp + fa2,

W= —ful = fauy — fyug & (e qud)fo + (uf + pud)fy
+ (—pu?, - qug +u?) fo + freutu? + fautut + fput
+ fqu2 + fJUPUQ + frqu4 =+ (qul + pUZ)fzp
+ (ulut + (u?)?) frq + (qu? + put) fog + f.20q + fyep
+ fmzq + fryy

0P = fuz oy — Syt o+ (g o+ que) fo o+ (g & puz) fy
+ (—pud — qug’ +u’)f, + fp2u1u3 + fq2u3u4 + fypu1
+ fapt® + fyqud + foqut + (qut + pud) £y
+ (ulut + (©?)?) foq + (qu + put) foq + fo2pg + fyzp
+ fxzq + fa:yy

Pt = —ful = foup — fyug + (uy 4 qud) fo + (ug + pul) f
+ (—pup — qug +ut) fo + frou?u® + fr2(ut)?
+ (u? + u3)quu4 + 2fyqu4 + 2fzqqu4 + (u? + u3)fyp
+ (W + ) fopq + f2q® + 2fyeq + fp-

3.4. Differential invariants. By I' we denote the pseudogroup of all con-
tact transformations of the base M of m. It acts on every JF7 by its lifted
diffeomorphisms.

A function or a vector field or a differential form or any other object
defined in J*7 is a differential invariant of the action of T' on JFr if for
any ¢ € I the lifted transformation ¢*) preserves this object. In this work,
these differential invariants are called also differential invariants (of order
k) of Monge-Ampére equations or simply differential invariants (of order

Let € be a Monge—Ampere equation, Sg the section of 7 identified with €&,
and I a differential invariant of order k. Then the restriction I| L® is denoted

&

by Ie. If a contact transformation f transforms & to é, then obviously f®*)
transforms I¢ to I, for any kth order invariant I.

Functions that are differential invariants are also called scalar differential
invariants. By Aj we denote the set of all scalar differential invariants of
order < k. It is clear that Ay is an R-algebra. Then we have a sequence of
inclusions

A C A C...CA, C A1 C ...

The R-algebra A = (J,—, A is called the algebra of scalar differential in-
variants of Monge—Ampére equations.

Let X be a contact vector field in M and I a differential invariant of order
k. Then Ly k) () = 0, where L stands for the Lie derivative. This means,
in particular, that kth order scalar invariants are 1st integrals of all contact
vector fields lifted to J*r. This gives the well-known general method to
calculate scalar differential invariants.
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Obviously, a scalar differential invariant of order k is constant on every
orbit of the action I' on J¥7.

Proposition 3.3. (1) J*r is an orbit of the action of T iff k= 0,1,
(2) Codimension of a generic orbit of J?m is equal to 2.
(3) Codimension of a generic orbit of J>m is equal to 29.

Proof. Let 6, be a generic point of J*7 and Orbg, the orbit of the action
I' on J*7 passing through 6. Then codim Orbg, = dim Jkm — dim Orbg, .
The dimension of Orbg, is the dimension of the subspace spanned by all

vectors X*)(;,). It can be calculated with the help of computer algebra
using formulas (20) and (21). O

From this proposition, we obtain immediately

Corollary 3.4. (1) The algebra of scalar differential invariants As is
generated by 2 functionally independent invarints.
(2) The algebra of scalar differential invariants As is generated by 29
functionally independent invarints.

4. DIFFERENTIAL INVARIANTS ON J27

4.1. Base projectors. Since we consider a generic hyperbolic Monge—Am-
pere equation &, then

dim(D (€)M = dim(D?(e))M) =3
and the distributions (DI(E))(D, (92(8))(1) are generic. It follows that
dim(D'(€))® = dim(D*(€))® =5.

Suppose that vector fields X1, X generate the distribution D*(€) and vec-
tor fields X3, X4 generate the distribution D?(€). The 3-dimensional generic
distributions (X7, Xo, [X1, X2]) and (X3, X4, [X3, X4]) intersect along a one-
dimensional subdistribution D3(&) = (X1, Xa, [ X1, Xa]) N (X3, X4, [X3, X4]).
Hence, equation & generates a direct sum decomposition

T(M) =D'(€) ® D*(&) @ D*(€). (22)
This decomposition generates three projections
Pi: T(M) — DYE), i=1,2,3.

These projections can be viewed as vector-valued 1-forms in the follow-
ing way. Suppose X5 is a vector field generating D3 and a coframe field
{wl, ..., w5} on M is generated by a frame field {Xj,..., X5} on M. Then

Pr=w'®X;+uw?® X,
Pr=w® X3 +uw'® Xy, (23)
?3:w5®X5.

It is clear that these vector-valued differential 1-forms are differential
invariants of & with respect to contact transformations.

Obviously, the initial equation € can be reconstructed completely from
each of the invariants P and Ps.
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4.2. Coordinate expressions for base projectors. To calculate in coor-

dinates, we fix the vector fields X1, ..., X5 according to equations (18) and
(19), that is,
0 0 0 0 0 0 0 0
1 ax—kpaz—ku 8p+u 9q° 2 ay+qaz+ua +u g’ 2
D O AL S L AL A L A
37 o " Paz Op g’ "t oy 5, op oq
Obviously,
X5 = MX1 + 22X0 4 5[X1, Xo] = M3 X5 4+ M Xy + x[ X3, X4]. (25)

By easy calculation we get

NM=Al M=, x=-k#0,

where
1
N = o (W + ), + (e + ) + ' (? + o),
— 2(uj + pus + ulué) — (u® + ug)ug + ugug + u2u§’,) , (26)
1 .
A2 = R ((u2 + us)z + p(u2 + u3)z + ul(u2 + u3)p

- 2(u; + qul + u4u;) — (u* + ug)ull, + u2ug’ + u3ug> (27)

provided we normalize X5 by the requirement x = 1.
Consider the brackets of the vector fields X7, ..., X5. We have

5
X5, Xi] = by X
=1

Obviously,

b = —bpj - (28)

From (25) and x = 1, we have
1 2 3 1 4 2 5 (29)

By our definition, the form w® is a contact form on M. Then dw? is a

symplectic form and (X7, X2) and (X3, X4) are skew orthogonal with respect
to this form. It follows

big=b3, =0, bhy=05=0. (30)

Consider the differentials of functions b;k We define cé.k , as coefficients
in the decomposition

5
by, =D iy
r=1
From (28), we have

C;'k,r = _C}Lcj,r : (31)
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From (29) and (30), we get

1 _ 1 2 2 3 _ 4 5 _
Clo, = —Ars Clgp = —AL, Clg, =0, ¢y, =0, ¢y, =0,
1 2 _ 3\ 4 _y2 5 _
34, =0, 34, =0, Car = Ay Caap =Ars G4, =0, (32)
5 _ 5 5 _ 5 _
e, =0, clay =0, Co3r = 0, Coqgr = 0,

where the functions Al and A2 are defined by
5 5
AN =) MW", AN =) MW
r=1 r=1

4.3. Curvatures. Using formulas (3), (4) and the direct sum decomposition
(22), it is easy to compute the curvature forms of the distributions D}, @(23,
@(13 @ D:’é, D(lg @ D:é, and €, which are

Rl = —wl/\w2®X5,

Ro :w3/\w4®X5,

Ri = —(B35w! +03:0%) AW’ @ X3 — (bsw! + bW AW ® Xy,  (33)

R = —(B3sw? + bisw?) A WP @ X1 — (b2 + bwh) AW ® Xy,

R =R+ Ra,

respectively. It is clear that these curvature forms are differential invariants
of & with respect to contact transformations.

Proposition 4.1. Every 2-form [P;,P;], 1,7 = 1,2,3, is a linear combina-
tion of the curvature forms.

Proof. By direct calculation we obtain formulas
[P1,P2] = 5(—[P1, P1] — [P2, P2] + [P3, Ps])
[P1, Ps] = 3(=[P1, P1] + [P2, Po] — [P3, Ps]),
[P2, P3] = 5([P1, P1] — [P2, P2] — [P3, Pa])

and
[P1,P1] = —2(RI4+R1),  [P2,Po] = —2(R{+Ra), [P3,P3] = —2(R1+R2).
This completes the proof. O

4.4. Scalar invariants on J?w. We consider the following three invariant
5-forms with values in D} = (X5):

LR ARy) (R IR1) = (B35t — bisbis) W AL AW’ ® X5,
(R JR1) I (R JRa) = (bisbss + bisbis
+ b3:b2 + basb) W AL AW ® X5

(34)

Obviously, coefficients of proportionality between them are scalar differential
invariants. Therefore, assuming

bYsbss + bisbls + bysbas + bysbis # 0, (35)
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we get the following scalar differential invariants:

1 b3sbis — bisbis

bisbis + bisbls + b35b35 + b3sbis
_ bisb35 — bisbas
 bdsbls + bisbls + b35035 + bysbis

12

are scalar differential invariants on J27.

Proposition 4.2. The scalar invariants I; and I are functionally indepen-
dent.

Proof. By coordinate calculation. O

Using Corollary 3.4, we get

Theorem 4.3. The algebra of scalar differential invariants on J*m is gen-
erated by the invariants I' and I?.

5. DIFFERENTIAL INVARIANTS ON J37T

5.1. The complete parallelism. Applying the exterior differential to sca-
lar invariants I' and I?, we obtain the invariant differential 1-forms dI' and
dI? on J37. It makes possible to construct the following invariant differential
1-forms on J37:

We suppose that € is a generic equation. In particular, we may assume that
X5(I') #0, X5(I%) #0, (38)
and

X1(IY) Xo(Ih)
X1(I?) Xo(I?)

X3(I') Xy(Ih)

A1:’ #0, A2:‘XS(I2) X4(12) #0. (39)

This means that the collections of differential 1-forms {Q', ..., Q% Q?} and
{Q, ..., 0% O3} are invariant coframes in M. Each of these coframes defines
the invariant complete parallelism on M.
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The following invariant frames {Y1, ..., Yy, Yo } and {Y1, ..., Yy, Y2}, whe-

re
K(XQ - X1(I*)Xa)
K( Xo(IN X1 + X1 (1N X)),
AL(X4 I*)X;5 — X3(1%)Xy) , (40)
K( Xy(IMN X5+ X5(INXy)
1 ) 1

Vd=— X, YV2=—X
5T X5 (1Y) T Xy (1)

are dual to the above-mentioned coframes.
5.2. Scalar invariants on J>7.

5.2.1. The invariant 1-forms QF and Q3 obtained above are contact forms
on M. Therefore the coefficient of proportionality

X5(11)

X5(1?)

I’ =

between these forms is a scalar differential invariant on J37.

We already obtained numerous invariant objects of third order: functions,
differential form, differential vector valued form, and vector fields. Apply-
ing operations of tensor algebra and Frolicher—Nijenhuis brackets to these
objects, we can construct new invariant objects of third order the same as
above.

Many scalar differential invariants can be obtained as coefficients of linear
dependence between these objects. In this way, we already obtained the
invariants I, I?, I3.

Another way to construct scalar invariants uses expression of invariant
objects with respect to an invariant base. Components of an invariant object
with respect to an invariant base are scalar differential invariants.

Finally, invariant objects can possess their own scalar invariants. For
example, the determinant, the trace, and the other coefficients of the char-
acteristic polynomial of an invariant linear operator are scalar differential
invariants. Consider the invariant linear operators

A =Y5R1:D — Dpp, Do =Y51R3:D — Doy,

where D is the module of all vector fields on M and Doy, and Dy are

its submodules of all vector fields belonging to D(lg and @% respectively.
Consider the invariant operator

=A oA : D1 — Doy
Vl 2’DD(2(: I‘DDé @é ‘Dé
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Using (33) and (40), we get the following scalar differential invariants :

1
I' = tr(Vy) = m(bi‘sbés) + bisbis + bysb3s + bosbis) .
1
I° = det(V1) = m(b§5b}15 — b3sbiis) (b15bds — bisbas) -

(41)

5.2.2. Consider the invariant operator

=A oA :Dgp2 — Dgye.
Vs 1’D®§ 2 2 D2

b
The characteristic polynomials of this operator and the operator Vi are the
same.

Suppose v1 and v9 are eigenvectors for the operators Vi and Vg respec-
tively. Then obviously, Aj(v1) and Ag(vg) are eigenvectors for Vy and V;
respectively.

From (36) and (41), we get that the discriminant of the characteristic
polynomial of the operator V; is

(bY5b3s + bisbis + b3sb35 + basbis)”
X5 (11)4

Thus from (35) and (38), we obtain

(1—41'1?).

Theorem 5.1. (1) The operator V; has two different eigenfunctions, if
1—41'1% > 0.
(2) The operator V; has a unique eigenfunction, if 1 — 411> = 0.
(3) The operator V; has no eigenfunctions, if 1 — 4I'I% < 0.

Thus, the set of all generic hyperbolic Monge-Ampere equations is divided
onto three types: € has type ”h” if 1—4[(%[(% > 0, € has type "p” if 1—4[(%[(% =
0, and € has type 7e” if 1 — 41‘%]‘% < 0.

5.2.3. Return to a construction of scalar differential invariants. Let us use
the above-mention second way to construct these invariants. Consider in-
variant vector valued 2-forms on J3m. From proposition 4.1 they are linear
combinations of the curvature forms. Therefore we have 8 invariant 2-forms

Ry JdIt =150 A Q2
Ry JdI? =T7Q A Q2
Ry JdIt = 133 N Q*,
Ry 1dI? = I°Q3 A QF,
RiddIt =10 A Q2+ THO? A QP
RiJdI? = 11208 A QP + TB3Q2 A Q5
R Jdrt = M3 AQ° + TP A QP
R 1dI? =B ANQ°P + TP A QP
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Taking into account the invariant I3, from the first two equations, we

obtain the following scalar differential invariants on J37
6 _ A1 7T _ AQ
Xs5(1h)’ Xs(1h)

By the same way we can construct new scalar differential invariants using
invariant vector valued 3-forms, 4-forms, and 5-forms. For example the 3-
forms [P;, R;] or [P;, R}]], the 4-forms [P;, (ijl JRL)], the 5-forms [P, le]] i
[Pk, iRll]], etc. According to "the principle of n-invariants”, it is enough to
know five functionally independent scalar invariants J',..., 7% on J®7 to

solve the equivalence problem for Monge-Ampere equations.
The following statement can be proved by calculations in coordinates.

Theorem 5.2. Invariants I', I?, I3, I*, and I® are functionally indepen-
dent.

6. THE EQUIVALENCE PROBLEM

Let € be generic hyperbolic Monge-Ampeére equation considering as a
section of the bundle 7. Then the invariants [ é, R 2 form the coordinate
system in M. In terms of these coordinates, the 1-forms 21, ..., s defining
the complete parallelism on M have the form

5
Qi:ZQé(Ié,...,Ig)de, i=1,...,5.
=1

Theorem 6.1. The equivalence class of the equation € with respect to con-
tact transformations is defined by the functions €Y (Ié, e ,Ig) uniquely.

Proof. Let € be another Monge—Ampere equation such that there exist a
contact transformation f transforming it to €. Then obviously that the
functio~ns Q;(I}:, ..., I2) and Q;(Ié, e 7Ig) are the same for all‘i and j.
Let € be a Monge-Ampere equation such that the functions (1 [T i)
and Q?(I}g,...,lg) are the same for all ¢ and j and let. Suppose x =
(z',...,2°) is the the standard coordinate system in M, I¢ = (I},...,12)
and Iz = (I é, N | g) are invariant coordinate systems in M for & and &
respectively. Then the transformation x o I : L' I¢ o x is contact and it

transforms & to €. O

7. COORDINATES IN THE BUNDLE OF MONGE—-AMPERE EQUATIONS

In this section, we introduce local coordinates that are convenient to
calculate the above obtained differential invariants.

7.1. Several proofs in this paper depend on calculations, which are simply
impossible to do in terms of standard jet coordinates on J¥(7). This is why
we suggest a different set of coordinates on J* (7).

Lemma 7.1. Denote

ub =0 Xk, i <L < (42)

11...0p ip
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Functions x*, u¥, u,’flmih, 11 < ... <y, h <n, constitute a coordinate system

on J"(m). Moreover, the standard jet coordinates on J"(m) are rational
functions of the coordinates (42).

Proof. The statement is directly verifiable for n = 2. To express Dil,,,inuk in
terms of coordinates (42) for n > 2, one exploits the following obvious facts:
Firstly, fields D; are linear combinations of fields X; with coefficients from
C>®JY(n); secondly, the coefficients B ;, are functions on J2(m); thirdly

X, Xi, f = —B X;f + X, Xy, f for every function a from C*°J"(x). O

1112

Every invariant obtained so far was expressible in terms of the quantities

k k
bij and Cijr

Below, we construct coordinate system in J3 generated by functionally

independent coefficients bfj and cfj ,
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